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AIIIIrad-A closed form solution is liven for the supersonic rollina of an elastic: cylinder OD a plane usiDa
the metllod of the preceding papefUI. Taugential and normal forces are traDsmitted and Coulomb friction is
assumed.

INTRODUCTION

In the precedin, paper[ll, we gave a general solution for the contact tractions transmitted
between two elastic half-spaces when a disturbance propagates along their boundary at
supersonic speed. This problem originally arose in the context of the interaction of a plane
elastic pulse or wave with a unilateral interface [2-5], but a disturbance propagating along the
interface can also be produced by purely kinematic means if the bodies are slightly curved and
roll over each other. This is the subject of the present paper.

STATEMENT OF THE PROBLEM

We consider the problem of an elastic cylinder of radius R rolling with friction on an elastic
half-space with velocity v which is supersonic with respect to the materials of the two bodies.
The corresponding quasi-static problem has been treated by Carter [6] for similar materials and
Bentall and Johnson[7] for dissimilar materials. Craggs and Roberts[8] discuss tbe supersonic
rolling problem for a frictionless cylinder.

The bodies are pressed together by a compressive force P and transmit a tangential force Q
and torque QR as shown in Fig. 1. In the steady-state, the disturbance is stationary with respect
to a co-ordinate system moving at velocity v, and plane P and SV pulses will be aenerated in
both solids at angles given by eqns (1) and (2) of [I}. In the present example, there is no incident
pulse, but we can define a dimensionless co-ordinate through

Comparing this equation with eqn (3) of [I], we see that it is formally equivalent to writing

10 sin 80 =l/R

(1)

(2)

and the same substitution in subsequent equations of [I] will suffice to cast them in the correct
form for the present problem.

KINEMATICS

In general. we anticipate that the angular velocity 0 (clockwise positive) will differ from viR
and hence that some global slip u will occur at the contact region, where

u = v-RO. (3)

Note that global slip in rolling contact is a consequence of elastic deformation and does not
depend on the presence of slip zones. nor even on the force Q being non-zero (see for example.
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Fig. I. The cylinder rolling on a plane.

X,

Spence [9]). We define the slip ratio

U = ulv. (4)

To use the results of [1], we first determine the gap opening and slip velocities, Go("'), Ho("')
respectively, which would occur if there were no tractions transmitted between the bodies. We
find

(6)

(7)

where we have assumed that U, ." are small compared with unity as required by the small strain
theory of elasticity.

SOLUTION

The solution is obtained as in [I], to which the reader is referred for more detailed
explanation and definition of notation. We use eqns (6) and (7) to plot a diagram illustrating the
relative values of 'YIGO("'), 12Go("'), Hosgn AI and hence determine the extent of the slip and
stick zones. We restrict attention to the more common case 'YI > 0, but consider separately the
cases 'Y2 >0, 'Y2 < 0 which give qualitatively different results.

'Y2<0
The appropriate diagram for 'Y2 < 0 and u sgn AI > 0 is shown in Fig. 2(a), corresponding to

the free surface condition of Fig. 2(b). The diagram is shaded in accordance with the
inequalities in [J] which define the conditions for stick and slip. For example, stick is only
permitted in the range 'Y2GO> Hosgn AI > 'YI Go and hence can only occur between the two lines
-'Y2V.", -'YI v." in the right part of Fig. 2(a) as shown.

Contact will start at the point A, where the free surface solution predicts interpenetration
(see Fig. 2b) and extend to the left until B, beyond which only separation is possible.

For the case illustrated, the entire contact zone must be in a state of conforming slip and the
tractions are

(8)

(9)

from eqns (30) and (31) of [1] and eqn (6).
Suppose we now increase the depth of penetration, d, in Fig. 2(b), so that the point A falls in
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Fig. 2. (a) Onphical determination of slip and stick lones, 'YI > 0, 12 < O. (b) The free surface geometry.
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the stick region to the right of C in Fig. 2(a). The contact will now contain a conforming slip
zone 0 < 1/ < 1/2 in which the tractions are still given by (8) and (9) above and a stick zone
1/2 S 1/ < 1/0 in which

N = #L(I·qu sgr AI - A)vTl)
cdA, + A2A)

from eqns (16) and (17) of 0] and (6) and (7). The stick slip boundary is given by

_ U sgn AI
1/2 - - .

'Y2

(10)

(11)

(12)

The force resultants P, Q, transmitted by the contact zone can be found by integrating eqns
(8HII). Thus,

from which

('10

P = - R J
o

N(1/)d1/

0<1/0<1/2

(13)

(14)

(15)

(6)
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0< 110< 112 (17)

(18)

Notice that the ratio cJv which appears in these equations is equal to sin 8\ where 8\ is the
angle of reflection of P pulses from the moving disturbance. The same factor appears in the
definition of the Ai (eqns (9Hl1) of (1)) and it will cancel if the equations are expanded in terms
of the material constants.

An exactly parallel analysis can be conducted for the case u sgn A. < O. The line BAC now
falls in the lower part of Fig. 2(a).

If 110 < 11.. where

(19)

we have non-conforming slip only and the tractions are

(20)

(21)

If 110 > 11.. stick will occur in the range 110 > 11 > 11\ where the tractions are given by eqns (10)
and (11) above.

The resultant forces are

0< 110< 111

110> 111

0< 110< 111

(22)

(23)

(24)

(25)

SOLUTION WHEN P. Q ARE PRESCRIBED

The ratio of tangential to normal force must be in the range 1~ Q sgn A.IP ~ - I. It takes
the upper limit when there is non-conforming slip only (u sgn AI < 0, 11 < 1110 eqns (21) and (23»
and the lower limit when there is conforming slip only (u sgn Al > 0,11 < 112, eqns (15) and (17».

If the value of Q sgn AllP is between these limits, we must have stick and either conforming
or non-conforming slip. With conforming slip and stick

(26)
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from eqns (16) and (18), while for non-conforming slip and stick
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170> 17.; U sgn A. <0 (27)

from (23) and (25). Thus Q sgn A./P depends on 170, U only through the ratio U sgn A.t170 and it
follows from eqns (26) and (27) that conforming slip and stick wi11 occur if

(28)

while non-conforming slip and stick occurs if

(29)

Thus if P, Q are prescribed we can determine which reJime wi11 occur from (28) and (29) and
then solve for 170, U from the appropriate equations (16) and (18) or (23) and (25).

Figure 3(a) shows the total contact length 170 and its division into stick and slip for the
representative case IA.I = 0.2, A2= I, A) = I, 1=0.5. Complete stick occurs when Q sgn A.tP =
-IAII/A). We note that 170 is comparatively insensitive to variation in Q at given P. Correspond­
ing results for the slip ratio U are given in Fig. 3(b).

A special case of some interest is that of similar materials for which IA.I is zero and hence

(30)

The lines - 'Y. V17, - 'Y2 V17 in Fig. 2(a) then become symmetric about the horizontal axis and Figs.
(3a, b) become symmetric and anti-symmetric respectively about Q sgn A.tP = O.

All the above discussion applies to the case 'Y2 < 0 for which IAII/A) < f. However, it can be
seen from Fig. 3(a) or the inequality (28) that as IAII/A) approaches f the range of values of
Q sgn A.tP for which conforming slip and stick can occur diminishes.

'Y2> 0
We now consider the case IA.I > fA) and hence 'Y2 > O. The permissible domains for stick and

slip are shown in Fig. 4(a) and we see immediately that stick can only occur if u sgn AI < O.
If 170 < 172' i.e. if contact does not extend to the right of D in Fig. 4(a), the previous analysis

sti11 applies and the tractions and transmitted forces are Jiven by eqns (20H25).
For 170> 172' three contact zones are developed: non-conforming slip 0 < "1 < 171; stick in

17. < 17 < "12 and conforming slip 172 < 17 < 170' The tractions in the first two zones are unchanged
from the case '1)0 < 1'12 and in the conforming slip zone they are given by eqns (8) and (9). Hence,
we can calculate the transmitted forces which are

(31)

(32)

The variation of '1)0, U sgn AI with Q sgn AI/P is shown in Figs. 5(a, b) for the same values as
Fig. 3 except that 1=0.1. As Qsgn AllP decreases from +1, the stick zone increases until a
conforming slip zone develops at the leading edge. This zone then grows at the expense of the
non-conforming slip and stick zones whose lengths remain in the fixed ratio 'Y2/( 'YI - 'Y2) until
there is conforming slip everywhere at Q sgn A,IP = - f.
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division into stick and slip zones. (b) The slip ratio U.
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Fig. S. Effect of the applied loads P. Q when 12 >0 on (a) the extent of the contact region '10 and its
division into stick and slip zones. (b) The slip ratio U.
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